
Biodiesel and Renewable Diesel Emissions Study (Regulated Emissions) Dec. 8th, 2010 Kwangsam Na Heavy Duty Diesel Emission Testing Laboratory Mobile Source Control Division California Environmental Protection Agency Air Resources Board

Emission Testing

Descr	iptior	on v	ehic	les and	d fuels	tested
Make/model/year	Emission Control Devices	Odometer (miles)	Inertia weight (Ibm)	Engine Displacement (liter)	Horse power/ Torque	Test fuels
2000 Freightliner C15 Caterpillar		34,000	Cruise: 58,744 UDDS: 43,861	14.6	550 at 1800 rpm	CARB diesel, Soy-based biodiese (S20, S50, S100), Animal-based (A20, A50, A100), Renewable diesel (R20, R50, R100)
2006 International ISM 370	EGR	93,000	Cruise: 61,189 UDDS: 43,480	10.8	370 at 2100 rpm	CARB diesel, Soy-based biodiesel (S20, S50, S100), Animal-based (A20, A50, A100),
2008 Freightliner Mercedes Benz MBE 4000	EGR, DOC, DPF	8,000	Cruise: 57,490 UDDS: 43,480	12.8	450 at 1900 rpm	CARB diesel, Soy-based biodiese (S20, S50, S100), Animal-based (A20, A50, A100),5

Emission Data Measured

Regulated components

Non-regulated components

- Oxides of Nitrogen (NO_x)
- Particulate Matter (PM)
- Total Hydrocarbons (THC)
- Carbon Monoxide (CO)
- NO₂ fractions in NO_x
- Carbon Dioxide (CO₂)
- Nitrous Oxide (N₂O)

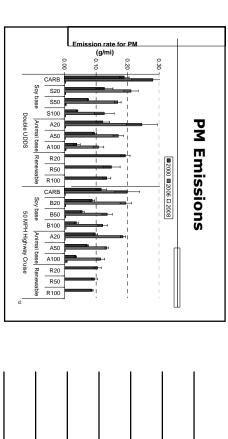
Constant Volume Sampling (CVS) Dilution **Tunnel and PM sampling Conditions**

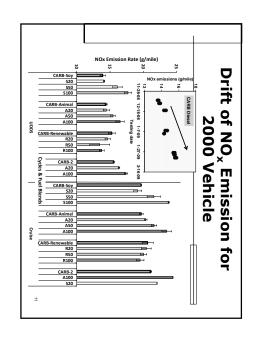
Horiba full flow dilution tunnel

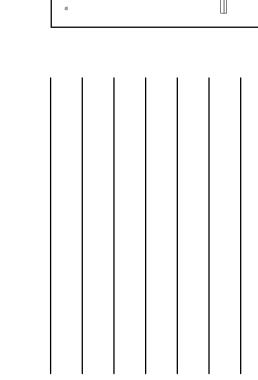
- Dilution air temp.: 25±5 °C
- Heated filter temp.: 47±5 °C
- Filter face velocity: 100±10 cm/s₈

PM and Gas Analysis

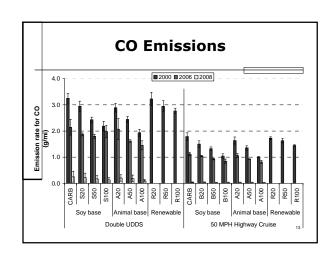
PM: Mettler Toledo UMX2 Micro Balance

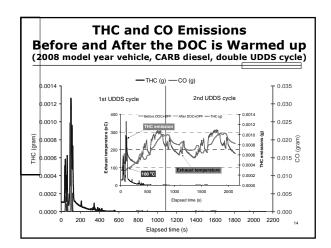

Readability: 0.1 μg

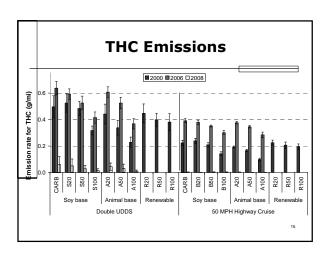

- Detector for Gas Analysis

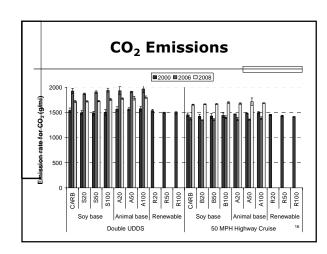

- CO, CO₂: NDIR (Non-dispersive infrared)
 THC: FID (flame ionization detector)
 NOx: CLD (Chemi-luminescence detector)

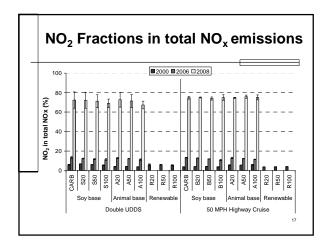
Gases: Horiba MEXA 7200D Exhaust Gas Analyzer










Test Results

Summary

- Average PM, THC and CO emission rates decreased with increasing blend level of biodiesel regardless of the driving cycles and the vehicle model year.
- For the 2008 vehicle, THC and CO emissions sharply dropped when the DOC is warmed up and were not affected by biodiesel concentration. PM emissions were close to or below detection limit. In other words, the use of biodiesel did not show any benefits in the reduction of THC, CO and PM emissions when used with DOC/DPF.
- The 2008 vehicle equipped with DOC and DPF showed the lowest regulated pollutant emissions among the vehicles tested. However, this vehicle was not effective at reducing CO_2 emissions.

Continued on next slide

Summary (Contd)

- NO_x significantly increased for 50% and higher biodiesel blends regardless of the driving cycles and the vehicle model year.
 Increase in NOx emission was most noticeable for the 2008 vehicle.
- For renewable diesel, NO_x shows a decreasing trend with increasing blend level for both driving cycles. However, its significant increase was observed for pure renewable diesel.
- For the 2000 vehicle with no NO_x control device (EGR), more NO_x was emitted for the highway cruise cycle (having high load) than the UDDS cycle (with lower load). However, this emission pattern was opposite for vehicles equipped with EGR, showing a better NO_x reduction efficiency under higher load driving cycle.

.

Continued on next slide

Summary (contd)

- CO₂ emissions were not significantly impacted by biodiesel blend levels for different vehicle model year except for renewable diesel blend levels higher than 50% which significantly decreased CO₂ emissions for both driving cycles.
- No significant impact of biodiesel was found on NO₂ fractions for all vehicles tested. The NO₂ fractions were the highest for the 2008 vehicle equipped with a DOC. The 2006 vehicle equipped with EGR showed a higher NO₂ fraction than the 2000 vehicle with no EGR.

20

Thank you for your attention !!!

21